

ADVANCED GCE UNIT

4727/01

Further Pure Mathematics 3
THURSDAY 25 JANUARY 2007

Morning

Time: 1 hour 30 minutes

Additional Materials: Answer Booklet (8 pages) List of Formulae (MF1)

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.

ADVICE TO CANDIDATES

- Read each question carefully and make sure you know what you have to do before starting your answer.
- You are reminded of the need for clear presentation in your answers.

- 1 (i) Show that the set of numbers {3, 5, 7}, under multiplication modulo 8, does not form a group.
 - (ii) The set of numbers $\{3, 5, 7, a\}$, under multiplication modulo 8, forms a group. Write down the value of a.
 - (iii) State, justifying your answer, whether or not the group in part (ii) is isomorphic to the multiplicative group $\{e, r, r^2, r^3\}$, where e is the identity and $r^4 = e$. [2]
- 2 Find the equation of the line of intersection of the planes with equations

$$r.(3i + j - 2k) = 4$$
 and $r.(i + 5j + 4k) = 6$,

giving your answer in the form $\mathbf{r} = \mathbf{a} + t\mathbf{b}$.

- 3 (i) Solve the equation $z^2 6z + 36 = 0$, and give your answers in the form $r(\cos \theta \pm i \sin \theta)$, where r > 0 and $0 \le \theta \le \pi$.
 - (ii) Given that Z is either of the roots found in part (i), deduce the exact value of Z^{-3} . [3]
- 4 The variables x and y are related by the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x^2 - y^2}{xy}.$$
 (A)

(i) Use the substitution y = xz, where z is a function of x, to obtain the differential equation

$$x\frac{\mathrm{d}z}{\mathrm{d}x} = \frac{1 - 2z^2}{z}.$$
 [3]

[5]

- (ii) Hence show by integration that the general solution of the differential equation (A) may be expressed in the form $x^2(x^2 2y^2) = k$, where k is a constant. [6]
- A multiplicative group G of order 9 has distinct elements p and q, both of which have order 3. The group is commutative, the identity element is e, and it is given that $q \neq p^2$.
 - (i) Write down the elements of a proper subgroup of G

(a) which does not contain
$$q$$
, [1]

- (b) which does not contain p. [1]
- (ii) Find the order of each of the elements pq and pq^2 , justifying your answers. [3]
- (iii) State the possible order(s) of proper subgroups of G. [1]
- (iv) Find two proper subgroups of G which are distinct from those in part (i), simplifying the elements. [4]

© OCR 2007 4727/01 Jan07

6 The variables x and y satisfy the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} + 3y = 2x + 1.$$

Find

- (i) the complementary function, [1]
- (ii) the general solution. [5]

In a particular case, it is given that $\frac{dy}{dx} = 0$ when x = 0.

- (iii) Find the solution of the differential equation in this case. [3]
- (iv) Write down the function to which y approximates when x is large and positive. [1]
- 7 The position vectors of the points A, B, C, D, G are given by

$$\mathbf{a} = 6\mathbf{i} + 4\mathbf{j} + 8\mathbf{k}$$
, $\mathbf{b} = 2\mathbf{i} + \mathbf{j} + 3\mathbf{k}$, $\mathbf{c} = \mathbf{i} + 5\mathbf{j} + 4\mathbf{k}$, $\mathbf{d} = 3\mathbf{i} + 6\mathbf{j} + 5\mathbf{k}$, $\mathbf{g} = 3\mathbf{i} + 4\mathbf{j} + 5\mathbf{k}$ respectively.

- (i) The line through A and G meets the plane BCD at M. Write down the vector equation of the line through A and G and hence show that the position vector of M is $2\mathbf{i} + 4\mathbf{j} + 4\mathbf{k}$. [6]
- (ii) Find the value of the ratio AG : AM. [1]
- (iii) Find the position vector of the point P on the line through C and G, such that $\overrightarrow{CP} = \frac{4}{3}\overrightarrow{CG}$. [2]
- (iv) Verify that P lies in the plane ABD. [4]
- **8** (i) Use de Moivre's theorem to find an expression for $\tan 4\theta$ in terms of $\tan \theta$. [4]

(ii) Deduce that
$$\cot 4\theta = \frac{\cot^4 \theta - 6\cot^2 \theta + 1}{4\cot^3 \theta - 4\cot \theta}$$
. [1]

- (iii) Hence show that one of the roots of the equation $x^2 6x + 1 = 0$ is $\cot^2(\frac{1}{8}\pi)$. [3]
- (iv) Hence find the value of $\csc^2(\frac{1}{8}\pi) + \csc^2(\frac{3}{8}\pi)$, justifying your answer. [5]

© OCR 2007 4727/01 Jan07

1 (i) Attempt to show no closure	M1		For showing operation table or otherwise
$3 \times 3 = 1$, $5 \times 5 = 1$ <i>OR</i> $7 \times 7 = 1$	A 1		For a convincing reason
OR Attempt to show no identity	M1		For attempt to find identity <i>OR</i> for showing operation table
Show $a \times e = a$ has no solution	A1	2	For showing identity is not 3, not 5, and not 7 by reference to operation table or otherwise
(ii) (a =) 1	B1	1	For value of <i>a</i> stated
(iii) EITHER:			
$\{e, r, r^2, r^3\}$ is cyclic, (ii) group is not cyclic	B1*		For a pair of correct statements
$OR: \{e, r, r^2, r^3\}$ has 2 self-inverse elements, (ii) group has 4 self-inverse elements	B1*		For a pair of correct statements
OR: $\{e, r, r^2, r^3\}$ has 1 element of order 2 (ii) group has 3 elements of order 2	B1*		For a pair of correct statements
OR: $\{e, r, r^2, r^3\}$ has element(s) of order 4	B1*		For a pair of correct statements
(ii) group has no element of order 4	B1		•
Not isomorphic	(dep*	")	For correct conclusion
	5	2	
2 EITHER: [3, 1, -2] × [1, 5, 4]	M1		For attempt to find vector product of both normals
$\Rightarrow \mathbf{b} = k[1, -1, 1]$	A1		For correct vector identified with b
e.g. put $x OR y OR z = 0$	M1		For giving a value to one variable
and solve 2 equations in 2 unknowns	M1		For solving the equations in the other variables
Obtain [0, 2, -1] <i>OR</i> [2, 0, 1] <i>OR</i> [1, 1, 0]	A1		For a correct vector identified with a
OR: Solve $3x + y - 2z = 4$, $x + 5y + 4z = 6$			
e.g. $y+z=1$ $OR x-z=1$ $OR x+y=2$	M1		For eliminating one variable between 2 equations
Put $x OR y OR z = t$	M1		For solving in terms of a parameter
[x, y, z] = [t, 2-t, -1+t] OR [2-t, t, 1-t]			•
OR [1+t, 1-t, t]	M1		For obtaining a parametric solution for x, y, z
Obtain [0, 2, -1] <i>OR</i> [2, 0, 1] <i>OR</i> [1, 1, 0]	A1		For a correct vector identified with a
Obtain $k[1, -1, 1]$	A1	5	For correct vector identified with b
	5		
3 (i) $z = \frac{6 \pm \sqrt{36 - 144}}{2}$	M1		For using quadratic equation formula
_			or completing the square
$z = 3 \pm 3\sqrt{3} i$	A1		For obtaining cartesian values AEF
Obtain $(r =) 6$	A1		For correct modulus
Obtain $(\theta =) \frac{1}{3}\pi$	A1	4	For correct argument
(ii) EITHER: 6^{-3} OR $\frac{1}{216}$ seen	В1√		f.t. from their r^{-3}
$Z^{-3} = 6^{-3}(\cos(-\pi) \pm i\sin(-\pi))$	M1		For using de Moivre with $n = \pm 3$
Obtain $-\frac{1}{216}$	A1		For correct value
$OR: z^3 = 6z^2 - 36z = 6(6z - 36) - 36z$	M1		For using equation to find z^3
216 seen	B1		Ignore any remaining z terms
Obtain $-\frac{1}{216}$	A1	3	For correct value
	7		

4 (i) $(y = xz \Rightarrow) \frac{dy}{dx} = x\frac{dz}{dx} + z$	B1	For a correct statement
$x\frac{dz}{dx} + z = \frac{x^2(1-z^2)}{x^2z} = \frac{1}{z} - z$	M1	For substituting into differential equation and attempting to simplify to a variables separable form
$x\frac{\mathrm{d}z}{\mathrm{d}x} = \frac{1}{z} - 2z = \frac{1 - 2z^2}{z}$	A1 3	For correct equation AG
(ii) $\int \frac{z}{1 - 2z^2} dz = \int \frac{1}{x} dx \Rightarrow -\frac{1}{4} \ln(1 - 2z^2) = \ln cx$	M1 M1* A1	For separating variables and writing integrals For integrating both sides to ln forms For correct result (<i>c</i> not required here)
$1 - 2z^2 = (cx)^{-4}$	A 1√	For exponentiating their ln equation including a constant (this may follow the next M1)
$\frac{x^2 - 2y^2}{x^2} = \frac{c^{-4}}{x^4}$	M1 (dep*)	For substituting $z = \frac{y}{x}$
$x^2(x^2 - 2y^2) = k$	A1 6	For correct solution properly obtained, including dealing with any necessary change of constant to k as given AG
5 (i) (a) e, p, p^2	B1	For correct elements
(b) e, q, q^2	B1 2	For correct elements
		SR If the answers to parts (i) and (iv) are reversed, full credit may be earned for both parts
(ii) $p^3 = q^3 = e \Rightarrow (pq)^3 = p^3q^3 = e$	M1	For finding $(pq)^3$ or $(pq^2)^3$
⇒ order 3	A1	For correct order
$(pq^2)^3 = p^3q^6 = p^3(q^3)^2 = e \Rightarrow \text{order } 3$	A1 3	For correct order
		SR For answer(s) only allow B1 for either or both
(iii) 3	B1 1	For correct order and no others
(iv)	B1	For stating <i>e</i> and either pq or p^2q^2
$e, pq, p^2q^2 OR e, pq, (pq)^2$	B1	For all 3 elements and no more
	B1	For stating e and either pq^2 or p^2q
$e, pq^2, p^2q \ OR \ e, pq^2, (pq^2)^2$	B1 4	For all 3 elements and no more
$OR e, p^2q, (p^2q)^2$		
	10	

6 (i) (CF $m = -3 \Rightarrow$) Ae^{-3x}	B1 1	For correct CF
(ii) (y =) px + q	B1	For stating linear form for PI (may be implied)
$\Rightarrow p + 3(px + q) = 2x + 1$	M1	For substituting PI into DE (needs y and $\frac{dy}{dx}$)
$\Rightarrow p = \frac{2}{3}, q = \frac{1}{9}$	A1 A1	For correct values
$\Rightarrow GS y = Ae^{-3x} + \frac{2}{3}x + \frac{1}{9}$	A1√	For correct GS. f.t. from their CF + PI
		SR Integrating factor method may be used, but CF must be stated somewhere to earn the mark in (i)
I.F. $e^{3x} \implies \frac{d}{dx} \left(y e^{3x} \right) = (2x+1)e^{3x}$	B1	For stating integrating factor
$\Rightarrow y e^{3x} = \frac{1}{3} e^{3x} (2x+1) - \int \frac{2}{3} e^{3x} dx$	M1	For attempt at integrating by parts the right way round
$\Rightarrow y e^{3x} = \frac{2}{3}x e^{3x} + \frac{1}{3}e^{3x} - \frac{2}{9}e^{3x} + A$	A2 *	For correct integration, including constant Award A1 for any 2 algebraic terms correct
$\Rightarrow GS y = Ae^{-3x} + \frac{2}{3}x + \frac{1}{9}$	A1√ 5	For correct GS. f.t. from their * with constant
(iii) EITHER $\frac{\mathrm{d}y}{\mathrm{d}x} = -3A\mathrm{e}^{-3x} + \frac{2}{3}$	M1	For differentiating their GS
$\Rightarrow -3A + \frac{2}{3} = 0$	M1	For putting $\frac{dy}{dx} = 0$ when $x = 0$
$y = \frac{2}{9}e^{-3x} + \frac{2}{3}x + \frac{1}{9}$	A1	For correct solution
$OR \frac{\mathrm{d}y}{\mathrm{d}x} = 0$, $x = 0 \Rightarrow 3y = 1$	M1	For using original DE with $\frac{dy}{dx} = 0$ and $x = 0$ to find y
$\Rightarrow \frac{1}{3} = A + \frac{1}{9}$	M1	For using their GS with y and $x = 0$ to find A
$y = \frac{2}{9}e^{-3x} + \frac{2}{3}x + \frac{1}{9}$	A1 3	For correct solution
(iv) $y = \frac{2}{3}x + \frac{1}{9}$	B1√ 1	For correct function. f.t. from linear part of (iii)
	10	

	1	
7 (i) EITHER: (AG is $\mathbf{r} = [6, 4, 8] + tk[1, 0, 1]$ or $[3, 4, 5] + tk[1, 0, 1]$	B1	For a correct equation
Normal to <i>BCD</i> is	M1	For finding vector product of any two of $\pm[1, -4, -1], \pm[2, 1, 1], \pm[1, 5, 2]$
$\mathbf{n} = k[1, 1, -3]$	A1	For correct n
Equation of <i>BCD</i> is r .[1, 1, -3] = -6	A1	For correct equation (or in cartesian form)
Intersect at $(6+t)+4+(-3)(8+t)=-6$	M1	For substituting point on AG into plane
$t = -4 \ (t = -1 \text{ using } [3, 4, 5]) \Rightarrow \mathbf{OM} = [2, 4, 4]$	A1	For correct position vector of M AG
OR: (AG is $\mathbf{r} = $) [6, 4, 8] + tk [1, 0, 1] or [3, 4, 5] + tk [1, 0, 1]	B1	For a correct equation
$\mathbf{r} = \mathbf{u} + \lambda \mathbf{v} + \mu \mathbf{w}$, where $\mathbf{u} = [2, 1, 3] \ or \ [1, 5, 4] \ or \ [3, 6, 5]$ $\mathbf{v}, \mathbf{w} = \text{two of } [1, -4, -1], [1, 5, 2], [2, 1, 1]$	M1 A1	For a correct parametric equation of <i>BCD</i>
$(x =) 6+t = 2+\lambda + \mu$ e.g. $(y =) 4 = 1-4\lambda + 5\mu$ $(z =) 8+t = 3-\lambda + 2\mu$	M1	For forming 3 equations in t , λ , μ from line and plane, and attempting to solve them
$t = -4 \text{ or } \lambda = -\frac{1}{3}, \mu = \frac{1}{3}$	A1	For correct value of t or λ , μ
\Rightarrow OM = [2, 4, 4]	A1 6	For correct position vector of M AG
(ii) A, G, M have t = 0, -3, -4 OR $AG = 3\sqrt{2}, AM = 4\sqrt{2} OR$ $AG = [-3, 0, -3], AM = [-4, 0, -4]$ $\Rightarrow AG : AM = 3 : 4$	B1 1	For correct ratio AEF
(iii) $OP = OC + \frac{4}{3}CG$	M1	For using given ratio to find position vector of P
$= \left[\frac{11}{3}, \frac{11}{3}, \frac{16}{3}\right]$	A1 2	For correct vector
(iv) EITHER: Normal to ABD is	M1	For finding vector product of any two of $\pm [4, 3, 5], \pm [1, 5, 2], \pm [3, -2, 3]$
$\mathbf{n} = k[19, 3, -17]$	A1	For correct n
Equation of <i>ABD</i> is $\mathbf{r} \cdot [19, 3, -17] = -10$	M1	For finding equation (or in cartesian form)
$19.\frac{11}{3} + 3.\frac{11}{3} - 17.\frac{16}{3} = -10$	A1	For verifying that <i>P</i> satisfies equation
<i>OR</i> : Equation of <i>ABD</i> is $\mathbf{r} = [6, 4, 8] + \lambda[4, 3, 5] + \mu[1, 5, 2]$ (etc.)	M1	For finding equation in parametric form
$\left[\frac{11}{3}, \frac{11}{3}, \frac{16}{3}\right] = [6, 4, 8] + \lambda[4, 3, 5] + \mu[1, 5, 2]$	M1	For substituting P and solving 2 equations for λ , μ
$\lambda = -\frac{2}{3}, \mu = \frac{1}{3}$	A1	For correct λ, μ
	A1	For verifying 3rd equation is satisfied
OR: $\mathbf{AP} = \left[-\frac{7}{3}, -\frac{1}{3}, -\frac{8}{3} \right]$	M1	For finding 3 relevant vectors in plane <i>ABDP</i>
	A1	For correct AP or BP or DP
AB = [-4, -3, -5], AD = [-3, 2, -3] ⇒ $AB + AD = [-7, -1, -8]$	M1	For finding AB , AD or BA , BD or DB , DA
$\Rightarrow \mathbf{AP} = \frac{1}{3}(\mathbf{AB} + \mathbf{AD})$	A1 4	For verifying linear relationship
3	13	101 tollig in our roundinging
	13	

8 (i) $\cos 4\theta + i \sin 4\theta =$		
$c^4 + 4ic^3s - 6c^2s^2 - 4ics^3 + s^4$	M1	For using de Moivre with $n = 4$
$\Rightarrow \sin 4\theta = 4c^3s - 4cs^3$		
and $\cos 4\theta = c^4 - 6c^2s^2 + s^4$	A1	For both expressions
$\Rightarrow \tan 4\theta = \frac{4 \tan \theta - 4 \tan^3 \theta}{1 - 6 \tan^2 \theta + \tan^4 \theta}$	M1	For expressing $\frac{\sin 4\theta}{\cos 4\theta}$ in terms of c and s
	A1 4	For simplifying to correct expression
(ii) $\cot 4\theta = \frac{\cot^4 \theta - 6\cot^2 \theta + 1}{4\cot^3 \theta - 4\cot \theta}$	D1 1	For inverting (i)
$4\cot^3\theta - 4\cot\theta$	B1 1	and using $\cot \theta = \frac{1}{\tan \theta}$ or $\tan \theta = \frac{1}{\cot \theta}$. AG
(iii) $\cot 4\theta = 0$	B1	For putting $\cot 4\theta = 0$
2		(can be awarded in (iv) if not earned here)
Put $x = \cot^2 \theta$	B1	For putting $x = \cot^2 \theta$ in the numerator of (ii)
$\theta = \frac{1}{8}\pi \Rightarrow x^2 - 6x + 1 = 0$		For deducing quadratic from (ii) and $\theta = \frac{1}{8}\pi$
$OR x^2 - 6x + 1 = 0 \Rightarrow \theta = \frac{1}{8}\pi$	B1 3	OR
8		For deducing $\theta = \frac{1}{8}\pi$ from (ii) and quadratic
(iv) $4\theta = \frac{3}{2}\pi OR \frac{1}{2}(2n+1)\pi$	M1	For attempting to find another value of θ
2nd root is $x = \cot^2\left(\frac{3}{8}\pi\right)$	A1	For the other root of the quadratic
$\Rightarrow \cot^2\left(\frac{1}{8}\pi\right) + \cot^2\left(\frac{3}{8}\pi\right) = 6$	M1	For using sum of roots of quadratic
$\Rightarrow \csc^2\left(\frac{1}{8}\pi\right) + \csc^2\left(\frac{3}{8}\pi\right) = 8$	M1 A1_5	For using $\cot^2 \theta + 1 = \csc^2 \theta$ For correct value
	13	